Data-Driven Fuzzy Modeling Using Deep Learning
نویسندگان
چکیده
Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machines. We use the restricted Boltzmann machine (RBM) and probability theory to overcome some common problems in data based modeling methods. The RBM is modified such that it can be trained with continuous values. A probability based clustering method is proposed to partition the hidden features from the RBM, and extract fuzzy rules with probability measurement. An extreme learning machine and an optimization method are applied to train the consequent part of the fuzzy rules and the probability parameters. The proposed method is validated with two benchmark problems.
منابع مشابه
Talking about the world with a distributed model
We use language to talk about the world, and so reference is a crucial property of language. However, modeling reference is particularly difficult, as it involves both continuous and discrete aspects of language. For instance, referring expressions like "the big mug" or "it" typically contain content words ("big", "mug"), which are notoriously fuzzy or vague in their meaning, and also function ...
متن کاملA New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...
متن کاملSensory Acceptability Modeling of Pistachio Green Hull’s Marmalade using Fuzzy Approach
The prediction of product acceptability is often an additive effect of individual fuzzy impressions developed by a consumer on certain underlying attributes characteristic of the product. In this paper, we present the development of a data-driven fuzzy-rule-based approach for predicting the overall sensory acceptability of pistachio green hull’s marmalade. The model was formulated using the Tak...
متن کاملLearning Probabilistic Programs Using Backpropagation
Probabilistic modeling enables combining domain knowledge with learning from data, thereby supporting learning from fewer training instances than purely data-driven methods. However, learning probabilistic models is difficult and has not achieved the level of performance of methods such as deep neural networks on many tasks. In this paper, we attempt to address this issue by presenting a method...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.07076 شماره
صفحات -
تاریخ انتشار 2017